Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172787, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38677430

RESUMO

Grazing is widely used in more than one-forth of global terrestrial ecosystems, with three quarters are distributed on complex topography. Grazing and topography have both resulted in degradation of approximately 49 % of natural grasslands. However, research on the interaction between topography and livestock exclusion on grassland characteristics is scarce. This study was carried out on a typical steppe to explore the effect of topography and enclosure year on vegetation characteristics. Aboveground biomass, and species richness were examined for three different enclosure years (0, 3, and 6 years), on four slopes (0°, 15°, 30°, and 45° slope), and three aspects (flat, shady and sunny). The results indicated that: The aboveground biomass on the 0° slope had a greater value after 6 years of the enclosure. Aboveground biomass increased with the increasing enclosure year, while it decreased with increasing slope except enclosure for 0 year on shady slope. Aboveground biomass on the shady slopes was greater than on the sunny slopes. Species richness of community and perennial plants increased with increasing slope and enclosure year. The annual plants richness inversely correlated with slope and enclosure year. All plant diversity indexes increased with increasing enclosure year. Margalef and Shannon-wiener indexes decreased with increasing slope, while Simpson and Pielou indexes increased. This paper demonstrates that aspect, slope and enclosure affect aboveground biomass by affecting other vegetation characteristics. In conclusion, grassland production can be improved with moderate livestock exclusion under different topography.


Assuntos
Biodiversidade , Biomassa , Pradaria , Gado , China , Animais , Plantas , Ecossistema , Herbivoria , Monitoramento Ambiental/métodos , Conservação dos Recursos Naturais
2.
J Environ Manage ; 356: 120679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531141

RESUMO

Introduction of alpine grasses to low altitude regions has long been a crucial strategy for enriching germplasm diversity, cultivating and acclimating high-quality species, enhancing ecosystem resilience and adaptability, as well as facilitating ecosystem restoration. However, there is an urgent need to investigate the impacts of planting Gramineae seeds on greenhouse gas (GHG) emissions, particularly during the critical stage of early plant growth. In this study, four species of grass seeds (Stipa breviflora, Poa pratensis, Achnatherum splendens, Elymus nutans) were collected from 19 high-altitude regions surrounding the Qinghai-Tibet Plateau and sown at low-altitude. Measurements of GHG emissions at early seedling growth in the mesocosm experiment using static chamber method showed a strong increase in the cumulative emissions of CO2 (5.71%-9.19%) and N2O (11.36%-13.64%) (p < 0.05), as well as an elevated CH4 uptake (2.75%-5.50%) in sites where the four grass species were introduced, compared to bare soil. Consequently, there was a substantial rise in global warming potential (13.87%-16.33%) (p < 0.05) at grass-introduced sites. Redundancy analysis showed that seed traits, plant biomass, and seedling emergence percentage were the main driving biotic factors of three GHGs fluxes. Our study unveils the potential risk of escalating GHG emissions induced by introducing high altitude grasses to low altitude bare soil, elucidating the mechanism through linking seed traits with seedling establishment and environmental feedback. Furthermore, this offers a new perspective for assessing the impact of grass introduction on ecological environment of introduced site.


Assuntos
Aquecimento Global , Gases de Efeito Estufa , Ecossistema , Plântula/química , Poaceae , Altitude , Solo , Metano/análise , Óxido Nitroso/análise , Dióxido de Carbono/análise
3.
Sci Total Environ ; 922: 171171, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38402971

RESUMO

The relationship between plant diversity and the ecosystem carbon pool is important for understanding the role of biodiversity in regulating ecosystem functions. However, it is not clear how the relationship between plant diversity and soil carbon content changes under different grassland use patterns. In a 3-year study from 2013 to 2015, we investigated plant diversity and soil total carbon (TC) content of grasslands in northern China under different grassland utilization methods (grazing, mowing, and enclosure) and climatic conditions. Shannon-Wiener and Species richness index of grassland were significantly decreased by grazing and mowing. Plant diversity was positively correlated with annual precipitation (AP) and negatively correlated with annual mean temperature (AMT). AP was the primary regulator of plant diversity. Grazing and mowing decreased TC levels in grasslands compared with enclosures, especially in topsoil (0-20 cm). The average TC content was decreased by 58 % and 36 % in the 0-10 cm soil layer, while it was decreased by 68 % and 39 % in 10-20 cm soil layer. TC was positively correlated with AP and negatively correlated with AMT. Principal component analysis (PCA) showed that plant diversity was positively correlated with soil TC, and the correlation decreased with an increase in the soil depth. Overall, this study provides a theoretical basis for predicting soil carbon storage in grasslands under human disturbances and climate change impacts.


Assuntos
Ecossistema , Pradaria , Humanos , Biomassa , Solo , China , Plantas , Carbono/análise
4.
J Environ Manage ; 348: 119184, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832291

RESUMO

Grazing and climate change both contribute to diversity loss and productivity fluctuations. Sensitive climate conditions and long-term grazing activities have a profound influence on community change, particularly in high-altitude mountain grassland ecosystems. However, knowledge about the role of long-term continuous grazing management on diversity, productivity and the regulation mechanisms in fragile grassland ecosystems is still rudimentary. We conducted a long-term grazing experiment on an alpine typical steppe in the Qilian Mountains to assess effects of grazing intensity on soil, diversity, productivity and the regulation mechanisms. Plants and soil were sampled along grazing gradients at different distances from the pasture entrance (0, 0.3, 0.6, 0.9, 1.2 and 1.5 km) under the non-growing (WP) and the growing season grazing pasture (SAP). The results revealed that community diversity and biomass did not change significantly on a time scale, while the concentration of soil organic carbon and total phosphorus increased significantly. Heavy grazing (0-0.3 km) decreased community diversity and biomass. Grazing increased soil chemical properties in heavy grazed areas of WP, while the opposite was recorded in SAP. Soil chemical properties explained the largest variances in community diversity and community biomass. The prediction model indicates that grazing in WP mainly affects community diversity through soil chemical properties, and promotes a positive correlation between community diversity and community biomass; in SAP, the direct effect of grazing gradients on community diversity and biomass is the main pathway, but not eliminating the single positive relationship between diversity and biomass, which means that diversity can still be used as a potential resource to promote productivity improvement. Therefore, we should focus on the regulation of soil chemical properties in WP, such as the health and quality of soil, strengthening its ability to store water, sequester carbon and increase nutrients; focus on the management of livestock in SAP, including providing fertilizer and sowing to increase diversity and production in heavily grazed regions and reducing grazing pressure through regional rotational grazing. Ultimately, we call for strengthening the stability and sustainability of ecosystems through targeted and active human intervention in ecologically sensitive areas to cope with future grazing pressures and climate disturbances.


Assuntos
Ecossistema , Pradaria , Humanos , Solo/química , Carbono , Biomassa
5.
Animal ; 17(8): 100910, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37544052

RESUMO

Ligularia virgaurea is the most widely functional native herbage in the alpine meadow pastures of the Qinghai-Tibet Plateau (QTP) and has multiple pharmacological and biological activities. The effect of L. virgaurea as a dietary component on the digestion and metabolism of sheep was evaluated by conducting feeding trials in metabolic cages. Thirty-two Tibetan yearling rams (29 ± 1.56 kg BW) were randomly allotted to four groups included in a completely randomised design with eight animals per treatment. Sheep were fed a basal diet (freshly native pasture) without the addition of L. virgaurea (control) or with the addition of L. virgaurea (100, 200, or 300 mg/kg BW per day) for 45 days. Addition of L. virgaurea to the diet of Tibetan sheep was found to influence the average daily gain (quadratic [Q], P < 0.001), feed conversion ratio (Q, P = 0.002), CH4 emissions (linear [L], P = 0.029), DM (Q, P = 0.012), neutral detergent fibre (Q, P = 0.017), acid detergent fibre (ADF) (Q, P = 0.027), and ether extract (EE) intake (Q, P = 0.026). Apparently, different levels of L. virgaurea affected the digestibility coefficients of DM, ADF, and EE (L, P > 0.05; Q, P < 0.05). The nitrogen (N) intake (Q, P = 0.001), retained nitrogen (Q, P < 0.001), and N utilisation efficiency (L, P > 0.05; Q, P ≤ 0.001) were also affected by the dietary inclusion of L. virgaurea. Effects of L. virgaurea feeding were also witnessed on methane energy (CH4-E) (L, P = 0.029), gross energy (GE) (Q, P = 0.013), digestible energy (DE) (Q, P = 0.015), and metabolisable energy (ME) intake (Q, P = 0.015). Energy utilisation efficiency expressed as a proportion of GE intake (DE/GE intake, ME/GE intake, ME/DE intake, FE/GE intake, and CH4-E/GE intake) manifested quadratic changes (P < 0.05) with the increase in the L. virgaurea supplementation level. The addition of L. virgaurea increased the activity of superoxide dismutase (Q, P = 0.026) and glutathione peroxidase activity (Q, P = 0.039) in the serum. Overall, the greatest improvement of feed digestibility, N retention, energy utilisation, and antioxidant capacity of Tibetan sheep was yielded by the inclusion of 200 mg/kg BW per day of L. virgaurea. Therefore, the addition of an appropriate amount of L. virgaurea to the diet of Tibetan sheep is safe and natural, and may enhance the sustainability of small ruminant production systems in QTP areas.


Assuntos
Digestão , Ligularia , Animais , Masculino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Antioxidantes/metabolismo , Detergentes , Dieta/veterinária , Suplementos Nutricionais , Metabolismo Energético , Nitrogênio/metabolismo , Ruminantes/metabolismo , Ovinos , Tibet
6.
Appl Environ Microbiol ; 89(7): e0064523, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37409977

RESUMO

Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants; furthermore, animal manure is an important reservoir of biocide resistance genes (BRGs) and metal resistance genes (MRGs). However, few studies have reported differences in the abundance and diversity of BRGs and MRGs between different types of animal manure and the changes in BRGs and MRGs before and after composting. This study employed a metagenomics-based approach to investigate ARGs, BRGs, MRGs, and mobile genetic elements (MGEs) of yak and cattle manure before and after composting under grazing and intensive feeding patterns. The total abundances of ARGs, clinical ARGs, BRGs, MRGs, and MGEs were lower in the manure of grazing livestock than in the manure of the intensively fed group. After composting, the total abundances of ARGs, clinical ARGs, and MGEs in intensively fed livestock manure decreased, whereas those of ARGs, clinical ARGs, MRGs, and MGEs increased in grazing livestock manure. The synergy between MGEs mediated horizontal gene transfer and vertical gene transmission via host bacteria proliferation, which was the main driver that altered the abundance and diversity of ARGs, BRGs, and MRGs in livestock manure and compost. Additionally, tetQ, IS91, mdtF, and fabK were potential indicators for estimating the total abundance of clinical ARGs, BRGs, MRGs, and MGEs in livestock manure and compost. These findings suggest that grazing livestock manure can be directly discharged into the fields, whereas intensively fed livestock manure should be composted before returning to the field. IMPORTANCE The recent increase in the prevalence of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and metal resistance genes (MRGs) in livestock manure poses risks to human health. Composting is known to be a promising technology for reducing the abundance of resistance genes. This study investigated the differences and changes in the abundances of ARGs, BRGs, and MRGs between yak and cattle manure under grazing and intensive feeding patterns before and after composting. The results indicate that the feeding pattern significantly affected the abundances of resistance genes in livestock manure. Manure in intensive farming should be composted before being discharged into the field, while grazing livestock manure is not suitable for composting due to an increased number of resistance genes.


Assuntos
Compostagem , Genes Bacterianos , Animais , Humanos , Bovinos , Esterco/microbiologia , Metagenômica , Resistência Microbiana a Medicamentos/genética , Metais , Antibacterianos/farmacologia , Gado
7.
Front Microbiol ; 14: 1174740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350783

RESUMO

Compared to traditional herbage, functional native herbage is playing more important role in ruminant agriculture through improving digestion, metabolism and health of livestock; however, their effects on rumen microbial communities and hindgut fermentation are still not well understood. The objective of present study was to evaluate the effects of dietary addition of Allium mongolicum on bacterial communities in rumen and feces of claves. Sixteen 7-month-old male calves were randomly divided into four groups (n = 4). All calves were fed a basal ration containing roughage (alfalfa and oats) and mixed concentrate in a ratio of 60:40 on dry matter basis. In each group, the basal ration was supplemented with Allium mongolicum 0 (SL0), 200 (SL200), 400 (SL400), and 800 (SL800) mg/kg BW. The experiment lasted for 58 days. Rumen fluid and feces in rectum were collected, Rumen fluid and hindgut fecal were collected for analyzing bacterial community. In the rumen, Compared with SL0, there was a greater relative abundance of phylum Proteobacteria (p < 0.05) and genera Rikenellaceae_RC9_gut_group (p < 0.01) in SL800 treatment. In hindgut, compared with SL0, supplementation of A. mongolicum (SL200, SL400, or SL800) decreased in the relative abundances of Ruminococcaceae_UCG-014 (p < 0.01), Ruminiclostridium_5 (p < 0.01), Eubacterium_coprostanoligenes_group (p < 0.05), and Alistipes (p < 0.05) in feces; Whereas, the relative abundances of Christensenellaceae_R-7_group (p < 0.05), and Prevotella_1 (p < 0.01) in SL800 were higher in feces, to maintain hindgut stability. This study provided evidence that A. mongolicum affects the gastrointestinal of calves, by influencing microbiota in their rumen and feces.

8.
Front Plant Sci ; 14: 1088849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814753

RESUMO

Grazing on cultivated grassland is a green agricultural model. However, in China's Loess Plateau, the type of cultivated grassland suitable for grazing and the amount of nitrogen application is still unclear, which has led to the failure of this model to be widely implemented. In this context, we set up an experiment using three grass planting types, including monoculture of alfalfa (Medicago sativa L.), monoculture of brome (Bromus inermis L.), and mixed planting of the two forages. Under each planting type, there were six management measures: grazing and no nitrogen application (GN1), grazing and 80 kg ha-1 nitrogen application (GN2), grazing and 160 kg ha-1 nitrogen application (GN3), cutting and no nitrogen application (MN1), cutting and 80 kg ha-1 nitrogen application (MN2), and cutting and 160 kg ha-1 nitrogen application (MN3). To explore the impacts of these treatments on pastures, we studied the effects on the yield, quality, and water use efficiency of the three cultivated grasslands. Results showed that alfalfa monoculture and alfalfa-brome mixed sowing grassland resulted in significantly higher hay yield, crude protein yield, water use efficiency (WUE), precipitation use efficiency (PUE), nitrogen use efficiency (NUE), and agronomic efficiency of nitrogen (AEN) as compared to brome monoculture grassland. In addition, the crude protein, ether extract, and crude ash content of alfalfa monoculture and alfalfa-brome mixture were increased significantly while the contents of neutral detergent fiber (NDF) were reduced, thereby increasing the relative feed value (RFV) during the two years. The forage hay yield, crude protein yield, ether extract, crude ash content, RFV, PUE, and WUE were significantly higher with GN1, GN2, and GN3 treatments than that with MN1 treatment. In contrast, the NDF and acid detergent fiber (ADF) content was significantly lower than the MN1 treatment. Furthermore, the fresh forage yield, crude protein yield, PUE, and WUE of GN3 treatment were significantly higher than that of GN1 and GN2 treatments in both years, while the NUE and AEN were significantly higher in GN2 and GN3 treatments than that of MN3 treatment. Based on these results, alfalfa-brome mixed cropping with the application of 160 kg ha-1 nitrogen under grazing conditions is an appropriate management practice for improving the forage yield, quality, and water- and nitrogen utilization efficiency of cultivated grassland in the Loess Plateau of China. This integrated management model is applicable to the cultivation and utilization of mixed grassland on nutrient-poor land in the Loess Plateau.

9.
Microbiol Spectr ; : e0281622, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36809032

RESUMO

The dynamics of ruminant-rumen microbiome symbiosis associated with feeding strategies in the cold season were examined. Twelve pure-grazing adult Tibetan sheep (Ovis aries) (18 months old; body weight, 40 ± 0.23 kg) were transferred from natural pasture to two indoor feedlots and fed either a native-pasture diet (NPF group) or an oat hay diet (OHF group) (n = 6 per treatment), and then the flexibility of rumen microbiomes to adapt to these compositionally different feeding strategies was examined. Principal-coordinate analysis and similarity analysis indicated that the rumen bacterial composition correlated with altered feeding strategies. Microbial diversity was higher in the grazing group than in those fed with native pasture and an oat hay diet (P < 0.05). The dominant microbial phyla were Bacteroidetes and Firmicutes, and the core bacterial taxa comprised mostly (42.49% of shared operational taxonomic units [OTUs]) Ruminococcaceae (408 taxa), Lachnospiraceae (333 taxa), and Prevotellaceae (195 taxa), which were relatively stable across different treatments. Greater relative abundances of Tenericutes at the phylum level, Pseudomonadales at the order level, Mollicutes at the class level, and Pseudomonas at the genus level were observed in a grazing period than in the other two treatments (NPF and OHF) (P < 0.05). In the OHF group, due to the high nutritional quality of the forage, Tibetan sheep can produce high concentrations of short-chain fatty acids (SCFAs) and NH3-N by increasing the relative abundances of key bacteria in the rumen, such as Lentisphaerae, Negativicutes, Selenomonadales, Veillonellaceae, Ruminococcus 2, Quinella, Bacteroidales RF16 group, and Prevotella 1, to aid in nutrients degradation and energy utilization. The levels of beneficial bacteria were increased by the oat hay diet; these microbiotas are likely to help improve and maintain host health and metabolic ability in Tibetan sheep to adapt to cold environments. The rumen fermentation parameters were significantly influenced by feeding strategy in the cold season (P < 0.05). Overall, the results of this study demonstrate the strong effect of feeding strategies on the rumen microbiota of Tibetan sheep, which provided a new idea for the nutrition regulation of Tibetan sheep grazing in the cold season on the Qinghai-Tibetan Plateau. IMPORTANCE During the cold season, like other high-altitude mammals, Tibetan sheep have to adapt their physiological and nutritional strategies, as well as the structure and function of their rumen microbial community, to the seasonal variation of lower food availability and quality. This study focused on the changes and adaptability in the rumen microbiota of Tibetan sheep when they adapted from grazing to a high-efficiency feeding strategy during the cold season by analyzing the rumen microbiota of Tibetan sheep raised under the different management systems, and it shows the linkages among the rumen core and pan-bacteriomes, nutrient utilization, and rumen short-chain fatty acids. The findings from this study suggest that the feeding strategies potentially contribute to variations in the pan-rumen bacteriome, together with the core bacteriome. Fundamental knowledge on the rumen microbiomes and their roles in nutrient utilization furthers our understanding of how rumen microbial adaptation to harsh environments may function in hosts. The facts obtained from the present trial clarified the possible mechanisms of the positive effects of feeding strategy on nutrient utilization and rumen fermentation in harsh environments.

10.
Environ Microbiol ; 24(12): 5760-5773, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36204778

RESUMO

The rumen of livestock grazing on the Qinghai-Tibetan Plateau (QTP) acts as a transfer station for the circulation of soil, grass, faecal mineral elements and nutrients. Whether the microorganisms from the soil and grass could circulate through livestock rumen and excreted faeces. We studied the structural composition and interactive networks of microbiomes (bacteria and fungi) in soil, grass, and grazing yaks (rumen and faeces) on the QTP by using 16S rRNA gene and internally transcribed spacer (ITS) sequencing technology and to calculate the contribution rate of microorganisms from one habitat to another habitat using SourceTracker analysis. The meta-co-occurrence network revealed that soil, grass, rumen, and faeces comprise four independent habitats. The bacterial and fungal composition was significantly different in these four habitats. Soil microbiota showed the highest alpha diversity and microbial network complexity. Rumen microbiota demonstrated the highest microbial network stability and synergy, while grass endophytes showed the lowest microbial network complexity, stability, and synergy. According to the SourceTracker model, grass contributes 0.02% to the rumen microbes of yaks, while soil microorganisms do not circulate in the rumen. The soil and grass microbiota originating from faeces were 4.5% and 1.2%, respectively. The contribution of soil to grass was found to be 1.1%. Overall, the rumen microbiota of yaks is relatively stable and is only minimally influenced by the microbiota inhabiting the environment under natural grazing conditions. However, the contribution of yaks to soil and grass microbiota is relatively high when compared with the contribution of soil and grass to yaks microbiota.


Assuntos
Microbiota , Rúmen , Animais , Bovinos , Rúmen/microbiologia , RNA Ribossômico 16S/genética , Poaceae , Tibet , Solo , Bactérias/genética
11.
Animals (Basel) ; 12(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36290193

RESUMO

Mowing, Mowing, which affects the nutritional levels of grasslands, is the main utilization of sown pasture. We sowed alfalfa monoculture grassland, tall fescue monoculture grassland and tall fescue + alfalfa mixed grassland in typical steppe of the Loess Plateau to investigate the nutrient compositions and in vitro degradability of those three grasslands under different mowing stubble times and to provide reference for nutrient management of sown pastures. The results showed that the stubble time significantly affected (p < 0.05) the nutrient compositions and mineral elements of forages in alfalfa monoculture grassland, whereas had no effects on the nutrient compositions and dry matter digestibility of forages in tall fescue monoculture grassland and alfalfa + tall fescue mixed grassland. The relative feeding value of mixed grassland of alfalfa and tall fescue was increased by 2.6−22.4% as compared to monoculture grasslands. The model constructed based on forage nutrient content could accurately predict the forage dry matter degradability of alfalfa monoculture, tall fescue monoculture and mixed alfalfa and tall fescue, respectively.

12.
J Environ Manage ; 323: 116167, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116258

RESUMO

Toxic plants are a natural component of alpine meadow which co-evolved with Tibetan sheep for thousands of years. One challenge for indigenous herders is to know the ecological thresholds of toxic plants and maintain their vital functions in ways that are compatible with economic income and ecological conservation. To achieve this, field trials with Tibetan sheep grazing in alpine meadow were conducted to examine the ecological thresholds of toxic plants for sheep production and ecosystem functions and their trade-offs. Our results demonstrated that the changing point values of biomass proportion of toxic plants for dry matter intake and liveweight gain of sheep were 17% and 22%, respectively. The changing point value of biomass (richness) proportion of toxic plants for soil carbon accumulation index was 31% (59%), for soil nutrient cycling index was 38% (42%), and for ecosystem multifunctionality index was 28% (50%). The trade-off between liveweight gain of sheep and ecosystem multifunctionality first decreased and then increased along the gradient of biomass proportion of toxic plants (the value of changing point was 37%), and had a significant negative correlation with richness of toxic plants. In addition, structural equation modeling indicated that toxic plants can affect the trade-off between liveweight gain of sheep and ecosystem multifunctionality though increasing acid detergent fiber of plant and decreasing plant species richness, belowground biomass and soil total phosphorus. Consequently, opinions towards toxic plants should shift from the conventional view that they are serious threat to grassland ecosystem health to an inclusive understanding that they are beneficial to livestock and ecosystem functions under certain ecological thresholds.


Assuntos
Ecossistema , Pradaria , Animais , Biomassa , Carbono/análise , Detergentes , Fósforo , Plantas Tóxicas , Ovinos , Solo/química , Tibet
13.
Environ Res ; 215(Pt 1): 114222, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049511

RESUMO

BACKGROUND: Alpine meadows, typical steppes, and deserts are among the globally important rangeland types that are generally distributed along temperature and precipitation gradients. Mineral losses caused by grazing are one of the key factors that can lead to instability or even degradation of these rangeland ecosystems. METHODS: We examined the concentrations of Cu, Fe, Mn, and Zn in soil, forage, and livestock dungs from diverse rangeland types in northwest China, to determine the relationships between these trace elements (TEs) concentrations and climatic factors (i.e., temperature, precipitation, and humidity), and to evaluate the potential risks of TEs deficiencies or excesses in these rangeland ecosystems. RESULTS: Forage Zn concentrations in forage of all three types of rangeland, and Cu concentrations in forage of the alpine meadow did not meet the growth requirements of grazing livestock. Concentrations of Cu, Fe, and Mn in forage and Fe, Mn, and Zn in livestock dungs had quadratic parabola relationships with temperature, precipitation, and humidity, but the relationships between climate factors and Cu, Fe, and Mn concentrations in soil were not significant. In addition, the abilities of the plant to absorb Cu, Fe, and Zn from soil were stronger in the typical steppe than that in the alpine meadows and desert. Also, the abilities of livestock to return TEs to soil were stronger in the alpine meadow than that in the typical steppe and desert. CONCLUSION: We derived a conceptual mode that the ratio of TE concentrations of the plant to soil and of livestock dung to forage represents the abilities of plants to absorb TEs from the soil matrix and livestock to return TEs to soil or to absorb TEs from forage, respectively. Results indicate potentially more serious risks of TEs deficiencies, especially that of Zn than previously considered in typical steppes and desert rangelands.


Assuntos
Ecossistema , Oligoelementos , Animais , Gado , Plantas , Solo
15.
Front Plant Sci ; 13: 860739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720569

RESUMO

The Qinghai-Tibetan Plateau is a vast geographic area currently subject to climate warming. Improved knowledge of the CO2 respiration dynamics of the Plateau alpine meadows and of the impact of grazing on CO2 fluxes is highly desirable. Such information will assist land use planning. We measured soil and vegetation CO2 efflux of alpine meadows using a closed chamber technique over diurnal cycles in winter, spring and summer. The annual, combined soil and plant respiration on ungrazed plots was 28.0 t CO2 ha-1 a-1, of which 3.7 t ha-1 a-1occurred in winter, when plant respiration was undetectable. This suggests winter respiration was driven mainly by microbial oxidation of soil organic matter. The winter respiration observed in this study was sufficient to offset the growing season CO2 sink reported for similar alpine meadows in other studies. Grazing increased herbage respiration in summer, presumably through stimulation of gross photosynthesis. From limited herbage production data, we estimate the sustainable yield of these meadows for grazing purposes to be about 500 kg herbage dry matter ha-1 a-1. Addition of photosynthesis data and understanding of factors affecting soil carbon sequestration to more precisely determine the CO2 balance of these grasslands is recommended.

16.
Front Microbiol ; 13: 840725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432287

RESUMO

For a long time, veterinary drugs and chemical additives have been widely used in livestock and poultry breeding to improve production performance. However, problems such as drug residues in food are causing serious concerns. The use of functional plants and their extracts to improve production performance is becoming increasingly popular. This study aimed to evaluate the effect of Cistanche deserticola in sheep feed on rumen flora and to analyze the causes to provide a theoretical basis for the future use of Cistanche deserticola as a functional substance to improve sheep production performance. A completely randomized experimental design was adopted using 24 six-month-old sheep males divided into four groups (six animals in each group) which were fed a basic diet composed of alfalfa and tall fescue grass. The C. deserticola feed was provided to sheep at different levels (0, 2, 4, and 6%) as experimental treatments. On the last day (Day 75), ruminal fluid was collected through a rumen tube for evaluating changes in rumen flora. The test results showed that Prevotella_1, Lactobacillus, and Rikenellaceae_RC9_gut_group were the dominant species at the genus level in all samples. Lactobacillus, Rikenellaceae_RC9_gut_group, Ruminococcaceae_NK4A214_group, Butyrivibrio_2, and Christensenellaceae_R-7_group differed significantly in relative abundance among the treatment groups. The polysaccharides in C. deserticola was the major factor influencing the alteration in rumen flora abundance, and had the functions of improving rumen fermentation environment and regulating rumen flora structure, etc. Hence, C. deserticola can be used to regulate rumen fermentation in grazing sheep to improve production efficiency.

17.
Front Plant Sci ; 13: 839920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35317014

RESUMO

Most alpine meadow on the Tibetan Plateau are at different stages of community succession induced by grazing practices. Quantifying the succession sequence and assessing the dynamics of plant composition, ecosystem coupling, and multifunctionality across successional stages are essential for reasonable restoration of degraded alpine meadow. Here, we selected areas with different grazing disturbance histories and used them as a space series (i.e., space-for-time substitution) to study the community succession. Our work quantified the plant succession sequence of alpine meadow induced by grazing with plant functional group approach. The plant succession sequence is from the tall sedge community with erect growth to the short undesirable toxic forbs community with prostrate growth. Ecosystem coupling, ecosystem multifunctionality and their relationships were all the lowest in Stage 4. Compared to Stage 4, the ecosystem multifunctionality index increased in Stages 1, 2, and 3 by 102.6, 89.8, and 207.6%, respectively; the extent of ecosystem coupling increased by 20.0, 16.8, and 21.2%, respectively. Our results indicated that the driving factors of ecosystem coupling and ecosystem multifunctionality were soil factor individual in early successional stage to plant-soil simultaneously in late successional stage. Our results also highlighted the importance of toxic weeds during the late stage of degraded succession and suggest that the expansion of toxic plants is a consequence of their greater suitability from a successional perspective. The findings of this study would provide valuable guidance for optimizing the management and restoration practice of alpine meadow.

18.
Sci Total Environ ; 829: 154628, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35304148

RESUMO

Forage crops are widely cultivated as livestock feed to relieve grazing pressure in agro-pastoral regions with arid climates. However, gaseous losses of soil nitrogen (N) following N fertilizer application have been considerable in response to the pursuit of increased crop yield. A two-year experiment was carried out in a typical saline field under a temperate continental arid climate to investigate the effect of N application rate on N2O emissions from barley (Hordeum vulgare L.), corngrass (Zea mays × Zea Mexicana), rye (Secale cereale L.), and sorghum-sudangrass hybrid (Sorghum bicolor × Sorghum sudanense). The dynamics of N2O emissions, hay yield, and crude protein (CP) yield were measured under four N application rates (0, 150, 200, and 250 kg ha-1) in 2016 and 2017. An N2O emission peak was observed for all crop species five days after each N application. Cumulative N2O fluxes in the growing season ranged from 0.66 to 2.40 kg ha-1 and responded exponentially to N application rate. Emission factors of N2O showed a linear increase with N application rate for all crop species, but the linear slopes significantly differed between barley or rye and corngrass and sorghum-sudangrass hybrid. The hay and CP yields of all forage grasses significantly increased with the increase of N application rate from 0 to 200 kg ha-1. Barley and rye with lower hay and CP yields showed higher N2O emission intensities. The increased level of N2O emission intensity was higher from 200 to 250 kg ha-1 than from 150 to 200 kg ha-1. At N application rates of 200 and 250 kg ha-1, CP yield had a significantly negative correlation with cumulative N2O emission and explained 50.5% and 62.9% of the variation, respectively. In conclusion, ~200 kg ha-1 is the optimal N rate for forage crops to minimize N2O emission while maintaining yield in continental arid regions.


Assuntos
Fertilizantes , Óxido Nitroso , Agricultura , Produtos Agrícolas , Grão Comestível/química , Fertilizantes/análise , Nitrogênio/análise , Óxido Nitroso/análise , Solo
19.
Front Cell Infect Microbiol ; 11: 781246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926323

RESUMO

Reports on alterations in the oral mycobiome of HIV-infected patients are still limited. This study was designed to compare the salivary mycobiome between 30 human immunodeficiency virus (HIV) infections and 30 healthy controls and explore the effect of antiretroviral therapy (ART) administration on the oral mycobiome of HIV infections. Results showed that the diversity and richness of salivary mycobiome in HIV-infected individuals were higher than those of controls (P < 0.05). After ART, the diversity and richness of salivary mycobiome in HIV-infected patients were reduced significantly (P < 0.05). Candida, Mortierella, Malassezia, Simplicillium, and Penicillium were significantly enriched in the HIV group and dramatically decreased after ART. While the relative abundance of Verticillium, Issatchenkia, and Alternaria significantly increased in patients with HIV after ART. Correlation analysis revealed that Mortierella, Malassezia, Simplicillium, and Chaetomium were positively correlated with viral load (VL), whereas Thyrostroma and Archaeorhizomyces were negatively related to VL and positively related to CD4+ T-cell counts. All results showed that HIV infection and ART administration affected the composition of salivary mycobiome communities. Furthermore, differences of salivary mycobiome in HIV infections after ART were complex and might mirror the immune state of the body.


Assuntos
Infecções por HIV , Malassezia , Micobioma , HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Carga Viral
20.
Front Microbiol ; 12: 663945, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276597

RESUMO

Selenium (Se) deficiency is a widespread and seasonally chronic phenomenon observed in Tibetan sheep (Ovis aries) traditionally grazed on the Qinghai-Tibet Plateau (QTP). Effects of the dietary addition of Se-enriched yeast (SeY) on the bacterial community in sheep rumen and rumen fermentation were evaluated with the aim of gaining a better understanding of the rumen prokaryotic community. Twenty-four yearling Tibetan rams [initial average body weight (BW) of 31.0 ± 0.64 kg] were randomly divided into four treatment groups, namely, control (CK), low Se (L), medium Se (M), and high Se (H). Each group comprised six rams and was fed a basic diet of fresh forage cut from the alpine meadow, to which SeY was added at prescribed dose rates. This feed trial was conducted for over 35 days. On the final day, rumen fluid was collected using a transesophageal sampler for analyzing rumen pH, NH3-N content, volatile fatty acid (VFA) level, and the rumen microbial community. Our analyses showed that NH3-N, total VFA, and propionate concentrations in the M group were significantly higher than in the other groups (P < 0.05). Both the principal coordinates analysis (PCoA) and the analysis of similarities revealed that the bacterial population structure of rumen differed among the four groups. The predominant rumen bacterial phyla were found to be Bacteroidetes and Firmicutes, and the three dominant genera in all the samples across all treatments were Christensenellaceae R7 group, Rikenellaceae RC9 gut group, and Prevotella 1. The relative abundances of Prevotella 1, Rikenellaceae RC9 gut group, Ruminococcus 2, Lachnospiraceae XPB1014 group, Carnobacterium, and Hafnia-Obesumbacterium were found to differ significantly among the four treatment groups (P < 0.05). Moreover, Tax4fun metagenome estimation revealed that gene functions and metabolic pathways associated with carbohydrate and other amino acids were overexpressed in the rumen microbiota of SeY-supplemented sheep. To conclude, SeY significantly affects the abundance of rumen bacteria and ultimately affects the rumen microbial fermentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA